4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
主营:原厂直采,平行进口,授权代理(蚂蚁淘为您服务)
咨询热线电话
4000-520-616
当前位置: 首页 > 产品中心 > RNA_polymerase > 国家烟草公司/伯氏疏螺旋体严格(B31)OspA蛋白/100ug/REC31663-100
商品详细国家烟草公司/伯氏疏螺旋体严格(B31)OspA蛋白/100ug/REC31663-100
国家烟草公司/伯氏疏螺旋体严格(B31)OspA蛋白/100ug/REC31663-100
国家烟草公司/伯氏疏螺旋体严格(B31)OspA蛋白/100ug/REC31663-100
商品编号: REC31663-100
市场价: ¥0.00
美元价: 0.00
产地: 美国(厂家直采)
公司:
产品分类: RNA聚合酶
公司分类: RNA_polymerase
联系Q Q: 3392242852
电话号码: 4000-520-616
电子邮箱: info@ebiomall.com
商品介绍

SDS-PAGE: Lane 1: Non-Reduced OspA protein. Lane 2: Molecular Weight Marker. Lane 3: Reduced OspA protein. Load: 1µg. Predicted/Observed size: ~70.5 kDa fusion protein (arrowhead), ~42.4 kDa for MBP, ~28.1 kDa for OspA.

BORRELIA BURGDORFERI SENSU STRICTO (B31) OSPA PROTEIN

This is a recombinant Borrelia burgdorferi OspA protein, fused to an MBP-tag and produced in E. coli (>90% purity).

PRODUCT DETAILS – BORRELIA BURGDORFERI SENSU STRICTO (B31) OSPA PROTEIN

  • Recombinant Borrelia burgdorferi sensu stricto (B31) OspA (NCBI Accession Number: ZP_03087263.1).
  • In 0.02 M Potassium Phosphate, 0.15 M Sodium Chloride, pH 7.2 and 0.01% (w/v) Sodium Azide.

BACKGROUND

Outer-Surface Protein A (OspA) is a 31 kDa lipoprotein encoded by Borrelia burgdorferi and is a major component of the spirochete’s extracellular matrix (Stevenson, et al., 1996), probably associated with lipid rafts and serving as a lipid-anchor (Toledo, et al., 2014). Strain B31 is the type strain (ATCC 35210) for this organism and was derived by limited dilutional cloning from the original Lyme-disease tick isolate obtained by A. Barbour (Johnson, et al., 1984). The Borrelia species causing Lyme disease express different OspA serotypes on their surface, B. burgdorferi (serotype 1), B. afzelii (serotype 2), B. garinii (serotypes, 3, 5 and 6) and B. bavariensis (serotype 4) (Wilske, et al., 1988).

Many of the borrelial surface antigens are lipid-modified proteins (i.e. lipoproteins), although a number of these surface-exposed lipoproteins (OspA, OspB, and OspC) are not found exclusively on the surface of the organism. These lipoproteins are also detected in the periplasm of the organism and can be shuttled to and from the borrelial surface at different points during infection. The interface between B. burgdorferi and its human host is its outer surface (and therefore proteins localized to the outer membrane) play an important role in dissemination, virulence, tissue tropism, and immune evasion. Antibodies directed against outer surface proteins have also been shown to protect animals and humans from infection with B. burgdorferi (Kenedy, et al., 2012).

OspA likely mediates the attachment of B. burgdorferi to the tick mid-gut by binding the mid-gut receptor TROSPA (Tick Receptor for OspA). TROSPA is downregulated to allow migration out of the tick mid-gut during feeding, and into the salivary glands before being transmitted to the mammalian host. This transition is believed to be facilitated by changes in expression of some B. burgdorferi genes, including OspA (Ding, et al., 2000). These changes may be regulated by changes in tick life cycle, changes in conditions during tick feeding (such as temperature, pH and nutrients) and/or in coordination with the course of infection in the mammal host (Norris, 2006).

A heterodimer of the linked C-terminal half of two OspA serotypes was shown to protect mice from a challenge with spirochetes expressing either OspA serotype 1, 2 or 5, when challenged with infected ticks and in vitro grown spirochetes (Comstedt, et al., 2014). OspA-specific human Mabs can prevent the transmission of B. burgdorferi from ticks to mice (Wang, et al., 2016). More recently, structural analysis of the human antibody LA-2/OspA complex has revealed specific residues that may be exploited to modulate recognition of the protective epitope of OspA potentially offering a new path towards prophylactic passive antibodies (Shivender, et al., 2017).

REFERENCES

  • Comstedt, P. et al., 2014. Design and Development of a Novel Vaccine for Protection against Lyme Borreliosis. PLoS One, 9(11), pp. 1-12.
  • Ding, W. et al., 2000. Structural identification of a key protective B-cell epitope in Lyme disease antigen OspA. J. Mol. Biol. , Volume 302, pp. 1153-1164.
  • Johnson, R.C., et al., 1984. Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. Int J Syst Bacteriol, 34, pp. 496–497.
  • Kenedy, M. R., Lenhart, T. R. & Akins, D. R., 2012. The Role of Borrelia burgdorferi Outer Surface Proteins. FEMS Immunol Med Microbiol., 66(1), pp. 1-19.
  • Norris, S. J., 2006. The dynamic proteome of Lyme disease Borrelia. Genome Biol., 7(3), p. 209.
  • Shivender, S. et al., 2017. Structural and Molecular Analysis of a Protective Epitope of Lyme Disease Antigen OspA and Antibody Interactions. J Mol Recognit., 30(5), pp. 1-15.
  • Stevenson, B., Tilly, K. & Rosa, P. A., 1996. A Family of Genes Located on Four Separate 32-Kilobase Circular Plasmids in Borrelia burgdorferi B31. J Bacteriol, 178(12), pp. 3508-3516.
  • Toledo, A. et al., 2014. Selective Association of Outer Surface Lipoproteins with the Lipid Rafts of Borrelia burgdorferi. MbIO, 5(2).
  • Wang, Y. et al., 2016. Pre-exposure Prophylaxis With OspA-Specific Human Monoclonal Antibodies Protects Mice Against Tick Transmission of Lyme Disease Spirochetes. J Infect Dis., 214(2), p. 205–211.
  • Wilske, B. et al., 1988. Antigenic variability of Borrelia burgdorferi. Ann N Y Acad Sci, 539, pp. 126-43.

Certificate of AnalysisSafety datasheet

Dry ice

品牌介绍
Native Antigen Company专业从事天然和重组病毒和细菌抗原,抗体和免疫测定的开发和生产,以及定制产品的开发和定制生产。该公司通过其专有的哺乳动物细胞表达系统在生产高质量蛋白质方面拥有数十年的经验,可确保正确的糖基化和正确的折叠。在领先的疫苗研究和血清学中,正确的折叠和糖基化至关重要的领先制药,体外诊断测定制造商和学术团体广泛采用了Native Antigen Company的高质量试剂。